Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38723194

RESUMEN

TALEs (transcription activator-like effectors) in plant-pathogenic Xanthomonas bacteria activate expression of plant genes and support infection or cause a resistance response. PthA4AT is a TALE with a particularly short DNA-binding domain harbouring only 7.5-repeats which triggers cell death in Nicotiana benthamiana; however, the genetic basis for this remains unknown. To identify possible target genes of PthA4AT that mediate cell death in N. benthamiana, we exploited the modularity of TALEs to stepwise enhance their specificity and reduce potential target sites. Substitutions of individual repeats suggested that PthA4AT-dependent cell death is sequence-specific. Stepwise addition of repeats to the C-terminal or N-terminal end of the repeat region narrowed the sequence requirements in promoters of target genes. Transcriptome profiling and in silico target prediction allowed the isolation of two cell death-inducer genes, which encode a patatin-like protein and a bifunctional monodehydroascorbate reductase/carbonic anhydrase protein. These two proteins are not linked to known TALE-dependent resistance genes. Our results show that the aberrant expression of different endogenous plant genes can cause a cell death reaction, which supports the hypothesis that TALE-dependent executor resistance genes can originate from various plant processes. Our strategy further demonstrates the use of TALEs to scan genomes for genes triggering cell death and other relevant phenotypes.

2.
Plants (Basel) ; 12(14)2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37514340

RESUMEN

Seeds are specialized plant organs that carry, nurture, and protect plant offspring. Developmental coordination between the three genetically distinct seed tissues (the embryo, endosperm, and seed coat) is crucial for seed viability. In this study, we explore the relationship between the TFs AtHB25 and ICE1. Previous results identified ICE1 as a target gene of AtHB25. In seeds, a lack of ICE1 (ice1-2) suppresses the enhanced seed longevity and impermeability of the overexpressing mutant athb25-1D, but surprisingly, seed coat lipid polyester deposition is not affected, as shown by the double-mutant athb25-1D ice1-2 seeds. zou-4, another mutant lacking the transcriptional program for proper endosperm maturation and for which the endosperm persists, also presents a high sensitivity to seed aging. Analysis of gso1, gso2, and tws1-4 mutants revealed that a loss of embryo cuticle integrity does not underlie the seed-aging sensitivity of ice1-2 and zou-4. However, scanning electron microscopy revealed the presence of multiple fractures in the seed coats of the ice1 and zou mutants. Thus, this study highlights the importance of both seed coat composition and integrity in ensuring longevity and demonstrates that these parameters depend on multiple factors.

3.
New Phytol ; 238(4): 1461-1478, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36829299

RESUMEN

Seeds slowly accumulate damage during storage, which ultimately results in germination failure. The seed coat protects the embryo from the external environment, and its composition is critical for seed longevity. Flavonols accumulate in the outer integument. The link between flavonol composition and outer integument development has not been explored. Genetic, molecular and ultrastructural assays on loss-of-function mutants of the flavonoid biosynthesis pathway were used to study the effect of altered flavonoid composition on seed coat development and seed longevity. Controlled deterioration assays indicate that loss of function of the flavonoid 3' hydroxylase gene TT7 dramatically affects seed longevity and seed coat development. Outer integument differentiation is compromised from 9 d after pollination in tt7 developing seeds, resulting in a defective suberin layer and incomplete degradation of seed coat starch. These distinctive phenotypes are not shared by other mutants showing abnormal flavonoid composition. Genetic analysis indicates that overaccumulation of kaempferol-3-rhamnoside is mainly responsible for the observed phenotypes. Expression profiling suggests that multiple cellular processes are altered in the tt7 mutant. Overaccumulation of kaempferol-3-rhamnoside in the seed coat compromises normal seed coat development. This observation positions TRANSPARENT TESTA 7 and the UGT78D1 glycosyltransferase, catalysing flavonol 3-O-rhamnosylation, as essential players in the modulation of seed longevity.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Longevidad , Semillas/metabolismo , Flavonoides/metabolismo , Flavonoles/metabolismo
4.
Front Microbiol ; 13: 1006962, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338045

RESUMEN

Huanglongbing (HLB), the current major threat for Citrus species, is caused by intracellular alphaproteobacteria of the genus Candidatus Liberibacter (CaL), with CaL asiaticus (CLas) being the most prevalent species. This bacterium inhabits phloem cells and is transmitted by the psyllid Diaphorina citri. A gene encoding a putative serralysin-like metalloprotease (CLIBASIA_01345) was identified in the CLas genome. The expression levels of this gene were found to be higher in citrus leaves than in psyllids, suggesting a function for this protease in adaptation to the plant environment. Here, we study the putative role of CLas-serralysin (Las1345) as virulence factor. We first assayed whether Las1345 could be secreted by two different surrogate bacteria, Rhizobium leguminosarum bv. viciae A34 (A34) and Serratia marcescens. The protein was detected only in the cellular fraction of A34 and S. marcescens expressing Las1345, and increased protease activity of those bacteria by 2.55 and 4.25-fold, respectively. In contrast, Las1345 expressed in Nicotiana benthamiana leaves did not show protease activity nor alterations in the cell membrane, suggesting that Las1345 do not function as a protease in the plant cell. Las1345 expression negatively regulated cell motility, exopolysaccharide production, and biofilm formation in Xanthomonas campestris pv. campestris (Xcc). This bacterial phenotype was correlated with reduced growth and survival on leaf surfaces as well as reduced disease symptoms in N. benthamiana and Arabidopsis. These results support a model where Las1345 could modify extracellular components to adapt bacterial shape and appendages to the phloem environment, thus contributing to virulence.

5.
Front Plant Sci ; 13: 915184, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845633

RESUMEN

Seed longevity is modulated by multiple genetic factors in Arabidopsis thaliana. A previous genome-wide association study using the Elevated Partial Pressure of Oxygen (EPPO) aging assay pinpointed a genetic locus associated with this trait. Reverse genetics identified the transcription factor DOF4.1 as a novel seed longevity factor. dof4.1 loss-of-function plants generate seeds exhibiting higher germination after accelerated aging assays. DOF4.1 is expressed during seed development and RNAseq data show several putative factors that could contribute to the dof4.1 seed longevity phenotype. dof4.1 has reduced seed permeability and a higher levels of seed storage proteins mRNAs (cruciferins and napins) in developing seeds, as compared to wild-type seeds. It has been reported that mutant lines defective in cruciferins or napins present reduced seed longevity. The improved longevity of dof4.1 is totally lost in the quadruple mutant dof4.1 cra crb crc, but not in a dof4.1 line depleted of napins, suggesting a prominent role for cruciferins in this process. Moreover, a negative regulation of DOF4.1 expression by the transcription factor DOF1.8 is suggested by co-inoculation assays in Nicotiana benthamiana. Indeed, DOF1.8 expression anticorrelates with that of DOF4.1 during seed development. In summary, modulation of DOF4.1 levels during seed development contributes to regulate seed longevity.

6.
Plant Cell Environ ; 45(9): 2708-2728, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35672914

RESUMEN

Understanding the genetic factors involved in seed longevity is of paramount importance in agricultural and ecological contexts. The polygenic nature of this trait suggests that many of them remain undiscovered. Here, we exploited the contrasting seed longevity found amongst Arabidopsis thaliana accessions to further understand this phenomenon. Concentrations of glutathione were higher in longer-lived than shorter-lived accessions, supporting that redox poise plays a prominent role in seed longevity. However, high seed permeability, normally associated with shorter longevity, is also present in long-lived accessions. Dry seed transcriptome analysis indicated that the contribution to longevity of stored messenger RNA (mRNAs) is complex, including mainly accession-specific mechanisms. The detrimental effect on longevity caused by other factors may be counterbalanced by higher levels of specific mRNAs stored in dry seeds, for instance those of heat-shock proteins. Indeed, loss-of-function mutant analysis demonstrated that heat-shock factors HSF1A and 1B contributed to longevity. Furthermore, mutants of the stress-granule zinc-finger protein TZF9 or the spliceosome subunits MOS4 or MAC3A/MAC3B, extended seed longevity, positioning RNA as a novel player in the regulation of seed viability. mRNAs of proteins with putative relevance to longevity were also abundant in shorter-lived accessions, reinforcing the idea that resistance to ageing is determined by multiple factors.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Germinación/genética , Fenotipo , Semillas/fisiología
7.
Clin Transl Gastroenterol ; 12(10): e00416, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34695034

RESUMEN

INTRODUCTION: MicroRNAs (miRNAs) are important epigenetic regulators in Crohn's disease (CD); however, their contribution to postoperative recurrence (POR) is still unknown. We aimed to characterize the potential role of miRNAs in predicting POR in patients with CD and to identify their pathogenic implications. METHODS: Of 67 consecutively operated patients with CD, we included 44 with pure ileal CD. Peripheral blood samples were taken before surgery and during follow-up. The patients were classified according to the presence or absence of POR assessed by ileocolonoscopy or magnetic resonance imaging enterography. The miRNAs were profiled by reverse transcription polymerase chain reaction before surgery and during morphological POR or, for those who remained in remission, 1 year after surgery. R software and mirWalk were used. RESULTS: Five human miRNAs (miR-191-5p, miR-15b-5p, miR-106b-5p, miR-451a, and miR-93-5p) were selected for discriminating between the 2 patient groups at presurgery (PS), with an area under the curve of 0.88 (95% confidence interval [0.79, 0.98]). Another 5 (miR-15b-5p, miR-451a, miR-93-5p, miR-423-5p, and miR-125b-5p) were selected for 1 year, with an area under the curve of 0.96 (95% confidence interval [0.91, 1.0]). We also created nomograms for POR risk estimation. CCND2 and BCL9L genes were related to PS miRNA profiles; SENP5 and AKT3 genes were related to PS and 1 year; and SUV39H1 and MAPK3K10 were related to 1 year. DISCUSSION: Different plasma miRNA signatures identify patients at high POR risk, which could help optimize patient outcomes. We developed nomograms to facilitate the clinical use of these results. The identified miRNAs participate in apoptosis, autophagy, proinflammatory immunological T-cell clusters, and reactive oxygen species metabolism.


Asunto(s)
Enfermedad de Crohn/genética , MicroARNs/sangre , Adulto , Colonoscopía , Enfermedad de Crohn/sangre , Enfermedad de Crohn/diagnóstico por imagen , Enfermedad de Crohn/cirugía , Femenino , Humanos , Íleon/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Nomogramas , Recurrencia , Medición de Riesgo , Adulto Joven
8.
Front Physiol ; 12: 670720, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177618

RESUMEN

OBJECTIVES: Concerns regarding marked differences in the weights and body composition of young rugby players competing within the same age groups have led to the suggestion of alternative models for grouping young players. The aims of this study were (1) to compare variance in the body size and body composition of schoolboy rugby players (9 to 14 years), across weight- and age-grading models, and (2) to identify morphotypes for the weight model using Hattori's body composition chart. MATERIALS AND METHODS: Skinfold thickness measurements were used to assess body fat mass (BF), fat-free mass (FFM), body fat mass index (BFMI), and fat-free mass index (FFMI). Standardized measure of height and weight were taken for all participants. Data were grouped according to the age categories of the French Rugby Federation (U11: Under 11 years, U13: Under 13 years, and U15: Under 15 years), and to the weight categories (W30-44.9; W45-59.9; and W60-79.9) carried out from 25th and 75th weight percentile in each age category. Body mass index status (NW normal-weight versus OW/OB overweight/obese) was considered. Extreme morphotypes are characterized from BFMI and FFMI in the weight-grading model on Hattori's body composition chart. RESULTS: The dispersion of anthropometric characteristics decreased significantly for the weight model, except for height in all groups and BFMI for U13. Among NW, 3, 1.8, and 0% upgraded; 18.2, 68.7, and 45.5% downgraded; among OW, 50, 21.5, and 12.5%; and among OB, 91.3, 83.3, and 74.6% upgraded, respectively, in U11, U13, U15. FFMI/BFMI were correlated in U11 (r = 0.80, p < 0.001), U13 (r = 0.66, p < 0.001), and U15 (r = 0.77, p < 0.001). There was no significant correlation in W45-59.9 and low correlations in W30-44.9 (r = 0.25, p < 0.001) and W60-79.9 (r = 0.29, p < 0.001). Significant grading difference between the centroids (p < 0.05) and the distribution deviates from centroids of BFMI and FFMI (p < 0.0001) were noted between the two models. Thirteen players were located in adipo-slender, twenty-three in adipo-solid, twenty-two in lean-slender, and two located in the lean-solid morphotype in weight model. CONCLUSION: A weight-grading model should be considered to limit mismatches in anthropometric variables. However, variations of body composition also persisted for this model. Hattori's body composition chart allowed more detailed examination of morphological atypicalities among schoolboy rugby players.

9.
New Phytol ; 231(2): 679-694, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33864680

RESUMEN

Cutin and suberin are lipid polyesters deposited in specific apoplastic compartments. Their fundamental roles in plant biology include controlling the movement of gases, water and solutes, and conferring pathogen resistance. Both cutin and suberin have been shown to be present in the Arabidopsis seed coat where they regulate seed dormancy and longevity. In this study, we use accelerated and natural ageing seed assays, glutathione redox potential measures, optical and transmission electron microscopy and gas chromatography-mass spectrometry to demonstrate that increasing the accumulation of lipid polyesters in the seed coat is the mechanism by which the AtHB25 transcription factor regulates seed permeability and longevity. Chromatin immunoprecipitation during seed maturation revealed that the lipid polyester biosynthetic gene long-chain acyl-CoA synthetase 2 (LACS2) is a direct AtHB25 binding target. Gene transfer of this transcription factor to wheat and tomato demonstrated the importance of apoplastic lipid polyesters for the maintenance of seed viability. Our work establishes AtHB25 as a trans-species regulator of seed longevity and has identified the deposition of apoplastic lipid barriers as a key parameter to improve seed longevity in multiple plant species.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes Homeobox , Semillas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Plant Cell Environ ; 43(10): 2523-2539, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32519347

RESUMEN

Seed longevity is a polygenic trait of relevance for agriculture and for understanding the effect of environment on the ageing of biological systems. In order to identify novel longevity genes, we have phenotyped the natural variation of 270 ecotypes of the model plant, Arabidopsis thaliana, for natural ageing and for three accelerated ageing methods. Genome-wide analysis, using publicly available single-nucleotide polymorphisms (SNPs) data sets, identified multiple genomic regions associated with variation in seed longevity. Reverse genetics of 20 candidate genes in Columbia ecotype resulted in seven genes positive for seed longevity (PSAD1, SSLEA, SSTPR, DHAR1, CYP86A8, MYB47 and SPCH) and five negative ones (RBOHD, RBOHE, RBOHF, KNAT7 and SEP3). In this uniform genetic background, natural and accelerated ageing methods provided similar results for seed-longevity in knock-out mutants. The NADPH oxidases (RBOHs), the dehydroascorbate reductase (DHAR1) and the photosystem I subunit (PSAD1) highlight the important role of oxidative stress on seed ageing. The cytochrome P-450 hydroxylase, CYP86A8, and the transcription factors, MYB47, KNAT7 and SEP3, support the protecting role of the seed coat during seed ageing.


Asunto(s)
Arabidopsis/genética , Genes de Plantas/genética , Longevidad/genética , Estrés Oxidativo/genética , Semillas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Genes de Plantas/fisiología , Estudio de Asociación del Genoma Completo , Microscopía Confocal , Plantas Modificadas Genéticamente , Polimorfismo de Nucleótido Simple/genética , Carácter Cuantitativo Heredable , Genética Inversa , Semillas/fisiología , Semillas/ultraestructura , Transcriptoma
11.
Phytopathology ; 110(11): 1791-1801, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32573348

RESUMEN

'Okitsu' is a mandarin cultivar showing substantial resistance to X. citri subsp. citri (X. citri). We have previously shown that this cultivar has significantly lower canker incidence and severity than 'Clemenules', particularly during early stages of leaf development in the field. This differential response is only seen when the leaves are inoculated by spraying, suggesting that leaf surface contributes to resistance. In this work, we have studied structural and chemical properties of leaf surface barriers of both cultivars. Ultrastructural analysis showed a thicker cuticle covering epidermal surface and guard cells in young 'Okitsu' leaves than in 'Clemenules'. This thicker cuticle was associated with a smaller stomatal aperture and reduced cuticle permeability. These findings correlated with an accumulation of cuticular wax components, including primary alcohols, alkanes, and fatty acids. None of these differences were observed in mature leaves, where both cultivars are equally resistant to the bacterium. Remarkably, mechanical alteration of cuticular thickness of young 'Okitsu' leaves allows canker development. Furthermore, cuticular waxes extracted from young 'Okitsu' leaves have higher antibacterial activity against X. citri than 'Clemenules'. Taken together, these data suggest that a faster development of epicuticular waxes in 'Okitsu' leaves play a central role in its resistance to X. citri.


Asunto(s)
Citrus , Enfermedades de las Plantas , Hojas de la Planta , Ceras
12.
Plant Cell Environ ; 43(2): 315-326, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31600827

RESUMEN

Permeability is a crucial trait that affects seed longevity and is regulated by different polymers including proanthocyanidins, suberin, cutin and lignin located in the seed coat. By testing mutants in suberin transport and biosynthesis, we demonstrate the importance of this biopolymer to cope with seed deterioration. Transcriptomic analysis of cog1-2D, a gain-of-function mutant with increased seed longevity, revealed the upregulation of several peroxidase genes. Reverse genetics analysing seed longevity uncovered redundancy within the seed coat peroxidase gene family; however, after controlled deterioration treatment, seeds from the prx2 prx25 double and prx2 prx25 prx71 triple mutant plants presented lower germination than wild-type plants. Transmission electron microscopy analysis of the seed coat of these mutants showed a thinner palisade layer, but no changes were observed in proanthocyanidin accumulation or in the cuticle layer. Spectrophotometric quantification of acetyl bromide-soluble lignin components indicated changes in the amount of total polyphenolics derived from suberin and/or lignin in the mutant seeds. Finally, the increased seed coat permeability to tetrazolium salts observed in the prx2 prx25 and prx2 prx25 prx71 mutant lines suggested that the lower permeability of the seed coats caused by altered polyphenolics is likely to be the main reason explaining their reduced seed longevity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Peroxidasas/metabolismo , Semillas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Germinación/fisiología , Lignina , Metabolismo de los Lípidos , Lípidos , Lípidos de la Membrana , Mutación , Peroxidasas/genética , Proantocianidinas , Semillas/genética
13.
Front Plant Sci ; 10: 1492, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31850012

RESUMEN

GCN2 (general control nonrepressed 2) is a serine/threonine-protein kinase that regulates translation in response to stressors such as amino acid and purin deprivation, cold shock, wounding, cadmium, and UV-C exposure. Activated GCN2 phosphorylates the α-subunit of the eukaryotic initiation factor 2 (eIF2) leading to a drastic inhibition of protein synthesis and shifting translation to specific mRNAs. To investigate the role of GCN2 in responses to UV-B radiation its activity was analyzed through eIF2α phosphorylation assays in mutants of the specific UV-B and stress signaling pathways of Arabidopsis thaliana. EIF2α phosphorylation was detectable 30 min after UV-B exposure, independent of the UV-B photoreceptor UV RESISTANCE LOCUS8 and its downstream signaling components. GCN2 dependent phosphorylation of eIF2α was also detectable in mutants of the stress related MAP kinases, MPK3 and MPK6 and their negative regulator map kinase phosphatase1 (MKP1). Transcription of downstream components of the UV-B signaling pathway, the Chalcone synthase (CHS) was constitutively higher in gcn2-1 compared to wildtype and further increased upon UV-B while GLUTATHIONE PEROXIDASE7 (GPX7) behaved similarly to wildtype. The UVR8 independent FAD-LINKED OXIDOREDUCTASE (FADox) had a lower basal expression in gcn2-1 which was increased upon UV-B. Since high fluence rates of UV-B induce DNA damage the expression of the RAS ASSOCIATED WITH DIABETES PROTEIN51 (RAD51) was quantified before and after UV-B. While the basal expression was similar to wildtype it was significantly less induced upon UV-B in the gcn2-1 mutant. This expression pattern correlates with the finding that gcn2 mutants develop less cyclobutane pyrimidine dimers after UV-B exposure. Quantification of translation with the puromycination assay revealed that gcn2 mutants have an increased rate of translation which was also higher upon UV-B. Growth of gcn2 mutants to chronic UV-B exposure supports GCN2's role as a negative regulator of UV-B responses. The elevated resistance of gcn2 mutants towards repeated UV-B exposure points to a critical role of GCN2 in the regulation of translation upon UV-B.

14.
Angew Chem Int Ed Engl ; 58(42): 14986-14990, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31424153

RESUMEN

The construction of communication models at the micro-/nanoscale involving abiotic nanodevices and living organisms has the potential to open a wide range of applications in biomedical and communication technologies. However, this area remains almost unexplored. Herein, we report, as a proof of concept, a stimuli-responsive interactive paradigm of communication between yeasts (as a model microorganism) and enzyme-controlled Janus Au-mesoporous silica nanoparticles. In the presence of the stimulus, the information flows from the microorganism to the nanodevice, and then returns from the nanodevice to the microorganism as a feedback.


Asunto(s)
Modelos Biológicos , Nanopartículas/química , Saccharomycetales/metabolismo , Dióxido de Silicio/química , Proteínas Fluorescentes Verdes/genética , Microscopía Confocal , Saccharomycetales/genética
15.
Mol Plant Pathol ; 20(10): 1394-1407, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31274237

RESUMEN

Transcription activator-like effectors (TALEs) are important effectors of Xanthomonas spp. that manipulate the transcriptome of the host plant, conferring susceptibility or resistance to bacterial infection. Xanthomonas citri ssp. citri variant AT (X. citri AT ) triggers a host-specific hypersensitive response (HR) that suppresses citrus canker development. However, the bacterial effector that elicits this process is unknown. In this study, we show that a 7.5-repeat TALE is responsible for triggering the HR. PthA4AT was identified within the pthA repertoire of X. citri AT followed by assay of the effects on different hosts. The mode of action of PthA4AT was characterized using protein-binding microarrays and testing the effects of deletion of the nuclear localization signals and activation domain on plant responses. PthA4AT is able to bind DNA and activate transcription in an effector binding element-dependent manner. Moreover, HR requires PthA4AT nuclear localization, suggesting the activation of executor resistance (R) genes in host and non-host plants. This is the first case where a TALE of unusually short length performs a biological function by means of its repeat domain, indicating that the action of these effectors to reprogramme the host transcriptome following nuclear localization is not limited to 'classical' TALEs.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enfermedades de las Plantas/microbiología , Xanthomonas/metabolismo , Xanthomonas/patogenicidad , Proteínas Bacterianas/genética , Citrus/microbiología , Nicotiana/microbiología
16.
Mol Plant Pathol ; 20(2): 254-269, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30260546

RESUMEN

Citrus is an economically important fruit crop that is severely afflicted by citrus canker, a disease caused by Xanthomonas citri ssp. citri (X. citri); thus, new sustainable strategies to manage this disease are needed. Although all Citrus spp. are susceptible to this pathogen, they are resistant to other Xanthomonas species, exhibiting non-host resistance (NHR), for example, to the brassica pathogen X. campestris pv. campestris (Xcc) and a gene-for-gene host defence response (HDR) to the canker-causing X. fuscans ssp. aurantifolii (Xfa) strain C. Here, we examine the plant factors associated with the NHR of C. limon to Xcc. We show that Xcc induced asymptomatic type I NHR, allowing the bacterium to survive in a stationary phase in the non-host tissue. In C. limon, this NHR shared some similarities with HDR; both defence responses interfered with biofilm formation, and were associated with callose deposition, induction of the salicylic acid (SA) signalling pathway and the repression of abscisic acid (ABA) signalling. However, greater stomatal closure was seen during NHR than during HDR, together with different patterns of accumulation of reactive oxygen species and phenolic compounds and the expression of secondary metabolites. Overall, these differences, independent of Xcc type III effector proteins, could contribute to the higher protection elicited against canker development. We propose that Xcc may have the potential to steadily activate inducible defence responses. An understanding of these plant responses (and their triggers) may allow the development of a sustained and sustainable resistance to citrus canker.


Asunto(s)
Citrus/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Xanthomonas campestris/patogenicidad , Ácido Abscísico/metabolismo , Citrus/metabolismo , Regulación de la Expresión Génica de las Plantas , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo
17.
Mol Plant Pathol ; 18(9): 1267-1281, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-27647752

RESUMEN

Xanthomonas citri ssp. citri (X. citri) is the causal agent of Asiatic citrus canker, a disease that seriously affects most commercially important Citrus species worldwide. We have identified previously a natural variant, X. citri AT , that triggers a host-specific defence response in Citrus limon. However, the mechanisms involved in this canker disease resistance are unknown. In this work, the defence response induced by X. citri AT was assessed by transcriptomic, physiological and ultrastructural analyses, and the effects on bacterial biofilm formation were monitored in parallel. We show that X. citri AT triggers a hypersensitive response associated with the interference of biofilm development and arrest of bacterial growth in C. limon. This plant response involves an extensive transcriptional reprogramming, setting in motion cell wall reinforcement, the oxidative burst and the accumulation of salicylic acid (SA) and phenolic compounds. Ultrastructural analyses revealed subcellular changes involving the activation of autophagy-associated vacuolar processes. Our findings show the activation of SA-dependent defence in response to X. citri AT and suggest a coordinated regulation between the SA and flavonoid pathways, which is associated with autophagy mechanisms that control pathogen invasion in C. limon. Furthermore, this defence response protects C. limon plants from disease on subsequent challenges by pathogenic X. citri. This knowledge will allow the rational exploitation of the plant immune system as a biotechnological approach for the management of the disease.


Asunto(s)
Citrus/microbiología , Enfermedades de las Plantas/microbiología , Xanthomonas/patogenicidad , Autofagia/fisiología , Biopelículas , Regulación de la Expresión Génica de las Plantas , Inmunidad de la Planta/fisiología , Ácido Salicílico/metabolismo
18.
Front Plant Sci ; 7: 1036, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27471515

RESUMEN

Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria × ananassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutatum spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5, and FaPR10) were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen.

19.
Cell Cycle ; 14(4): 630-40, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25590579

RESUMEN

ß-Lapachone (ß-lap) is a novel anticancer agent that selectively induces cell death in human cancer cells, by activation of the NQO1 NAD(P)H dehydrogenase and radical oxygen species (ROS) generation. We characterized the gene expression profile of budding yeast cells treated with ß-lap using cDNA microarrays. Genes involved in tolerance to oxidative stress were differentially expressed in ß-lap treated cells. ß-lap treatment generated reactive oxygen species (ROS), which were efficiently blocked by dicoumarol, an inhibitor of NADH dehydrogenases. A yeast mutant in the mitochondrial NADH dehydrogenase Nde2p was found to be resistant to ß-lap treatment, despite inducing ROS production in a WT manner. Most interestingly, DNA damage responses triggered by ß-lap were abolished in the nde2Δ mutant. Amino acid biosynthesis genes were also induced in ß-lap treated cells, suggesting that ß-lap exposure somehow triggered the General Control of Nutrients (GCN) pathway. Accordingly, ß-lap treatment increased phosphorylation of eIF2α subunit in a manner dependent on the Gcn2p kinase. eIF2α phosphorylation required Gcn1p, Gcn20p and Nde2p. Gcn2p was also required for cell survival upon exposure to ß-lap and to elicit checkpoint responses. Remarkably, ß-lap treatment increased phosphorylation of eIF2α in breast tumor cells, in a manner dependent on the Nde2p ortholog AIF, and the eIF2 kinase PERK. These findings uncover a new target pathway of ß-lap in yeast and human cells and highlight a previously unknown functional connection between Nde2p, Gcn2p and DNA damage responses.


Asunto(s)
Antineoplásicos/farmacología , Activación Enzimática/efectos de los fármacos , Naftoquinonas/farmacología , eIF-2 Quinasa/metabolismo , Antineoplásicos/metabolismo , Dicumarol/farmacología , Humanos , Immunoblotting , NAD(P)H Deshidrogenasa (Quinona)/antagonistas & inhibidores , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Naftoquinonas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales , Sales de Tetrazolio , Tiazoles , Transcriptoma
20.
BMC Plant Biol ; 15: 14, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25603772

RESUMEN

BACKGROUND: The increased selection pressure of the herbicide glyphosate has played a role in the evolution of glyphosate-resistance in weedy species, an issue that is becoming a threat to global agriculture. The molecular components involved in the cellular toxicity response to this herbicide at the expression level are still unidentified. RESULTS: In this study, we identify the protein kinase GCN2 as a cellular component that fosters the action of glyphosate in the model plant Arabidopsis thaliana. Comparative studies using wild-type and gcn2 knock-out mutant seedlings show that the molecular programme that the plant deploys after the treatment with the herbicide, is compromised in gcn2. Moreover, gcn2 adult plants show a lower inhibition of photosynthesis, and both seedlings and adult gcn2 plants accumulate less shikimic acid than wild-type after treatment with glyphosate. CONCLUSIONS: These results points to an unknown GCN2-dependent factor involved in the cascade of events triggered by glyphosate in plants. Data suggest either that the herbicide does not equally reach the target-enzyme in a gcn2 background, or that a decreased flux in the shikimate pathway in a gcn2 plants minimize the impact of enzyme inhibition.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Glicina/análogos & derivados , Proteínas Quinasas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glicina/farmacología , Mutación/genética , Fotosíntesis/efectos de los fármacos , Complejo de Proteína del Fotosistema II/metabolismo , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Transpiración de Plantas/efectos de los fármacos , Proteínas Quinasas/genética , Plantones/efectos de los fármacos , Plantones/genética , Ácido Shikímico/metabolismo , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Glifosato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...